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Structure solution by X-ray diffraction is an indispensable tool
for structural chemistry. Its success requires the measurement of
reliable structure factor moduli and mathematical techniques that
find the missing phases in a high-dimensional space. Although the
phase problem of crystallography has been largely overcome by
direct methods, troublesome cases still occur. In this paper, we
propose the application of the newab initio charge flipping
algorithm1 (CF) and present a challenging example for which it
clearly outperforms current software practice.

Direct methods have a particularly successful history2 that
includes the 1985 Nobel prize. They are based on constraints of
positivity and atomicity that lead to statistical phase relations of
structure factors. A tree of phases is usually built up from a random
starting set. Running multiple trials and ranking them by some figure
of merit are characteristic to these methods, just as the time-
consuming handwork required for deleting spurious atoms before
structure refinement can proceed. While direct methods, in their
original form, work entirely in reciprocal space, there are other
variants that iteratively switch back and forth between real and
reciprocal spaces. These dual space methods were initially used
for structure completion and phase extensionstheir ab initio
application is more recent. Peak-list optimization and phase
annealing were significant steps in this direction, and today’s most
elaborate programs differ a great deal from the classical scheme of
direct methods.3

For the charge flipping algorithm the roots are different. The
first and simplestab initio, dual space method comes from optics,
where the Gerchberg-Saxton-Fienup algorithm (GSF) is the
standard phase retrieval tool for nonperiodic objects.4 This is also
an example of a successful method that works without statistical
phase relations. The CF algorithm can be considered as a descendent
of GSF, but with significant modifications required by the presence
of periodicity and the lack of known object support. There are
several advantages of using the CF algorithm. First of all, no
information on atom types, chemical composition, or the space
group symmetry is required. The total charge can change freely,
and all space groups are treated asP1. The concept of atomicity is
not used either. Electron density can continuously evolve up to the
solution, where simple peak picking identifies atomssthe chemical
composition and space group symmetry are determined only
afterward. In this sense, CF is moreab initio than any other method.
All we need is high resolution, single-crystal diffraction data within
the resolution sphere of a typical radiusdmin ) 0.8 Å. The electron
density is represented on a correspondingly fine grid, and the
iteration process can start.

For initialization, a random phase set is selected that satisfies
Friedel’s lawæ(-h) ) -æ(h). Then structure factor amplitudes
are created asFobs(h)exp[iæ(h)], and the electron density is
calculated by the inverse Fast Fourier Transform (FFT). This is

the starting point in real space. The first modification changes (flips)
the sign ofF(r ) below a thresholdδ, while it retains largeF(r )
samples on the assumption that these belong to atomic regions.
The threshold is the only parameter of the algorithm, its optimal
value is a fraction of the maximum electron density and is found
by trials. In the next step, temporary structure factors are calculated
by the FFT. Calculated structure factors are then modified in
different ways. For observedF’s, the phases are kept and the
calculated moduli are replaced by the observed ones. Unobserved
F’s outside the resolution sphere are reset to zero, whileF(0),
corresponding to the total charge, is accepted as is. Finally, the
iteration cycle is completed by an inverse FFT and a newF(r ).

This unconditional iteration process can continue without human
intervention, and theR-factor serves only for monitoring the
progress and not as a cost function of an optimization approach.
Convergence is indicated by a sharp drop inR (see Figure 1), and
at this point, the iteration can be stopped. Once the solution is found,
it is very stable against deterministic or random perturbations,
including those that have driven the phase set into this state.
Moreover, this robust structural model is very complete and can
easily be refined by standard least squares programs.

It is important to understand why such a simple algorithm
succeeds. The main reason is the emptiness of the unit cell. In the
ideal electron density, a sea of zeros exists that shows up as small
ripples even when using high-resolution data. Charge flipping
continuously perturbs and marginalizes these lowF(r ) samples.
Thus, instead of using more constraints, it decreases the dimen-
sionality of the problem. There is also room for improvement. The
original version of the algorithm explores the high-dimensional
phase space by flipping smallF(r ). The search can be assisted in
reciprocal space, where perturbation of weak reflections can play
a similar role. For this, the weakest 10-50% of observed structure
factors are treated separately: their moduli are allowed to change
freely, and their calculated phases are shifted byπ/2. In this way,
the success rate of the modified algorithm is drastically increased,
and the range of solvable structures is extended.
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Figure 1. 100 runs of the CF algorithm starting from different random
phase sets. In each case, the drop inR signals convergence to the solution.
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The charge flipping algorithm was already shown to work on
experimental data of both periodic5a and aperiodic crystals.5b

Superspace CF for modulated crystals5b is a big success but is
beyond the scope of this paper. Regular crystals are more frequent
in structural chemistry. Previous examples5a were centrosymmetric,
contained heavy atoms in small unit cells, and, thus, could not show
the full power of the method. Here we present a more challenging
case. The selected crystal structure is not only larger (271 non-
hydrogen atoms in 5538 Å3) but it is also noncentrosymmetric
(space groupP1), contains only light atoms, and shows a
particularly awkward pseudosymmetry of six near-planar molecules.
It was found as a unique member of a series of chiral Piedfort
structures; details of the infinite hydrogen bonding are given
elsewhere.6 The molecular building block is C42H54O3, the central
sym-trisubstituted benzene ring has three arms with ethynyl spacers
and borneol units at the end. Six of these molecules are stacked on
top of each other in such a way that the arms of every second one
are approximately in the same orientation, and only the position of
the terminal units differs. This means that, while the true periodicity
is c, there is strong pseudosymmetry with a translation vectorc/3.
Although the experimental diffraction data are of good quality and
extend to high resolution, the structure was solved with considerable
difficulties using the program CRUNCH.7a Our recent tests with
SHELXS977b and SIR20047c showed similar behavior. Such an
atomic arrangement is rather unfavorable for direct methods, as
statistical phase relations rely on a near-random distribution of
atomic positions. Here this assumption evidently fails, and a strong
intensity enhancement shows up at reflections withl ) 3n.

Let us see how the CF algorithm performs. Both the original
and the modified CF solve the structure with ease, the useful range

of the δ parameter is wide and can be found quickly. We used
room temperature, unnormalized structure factors corrected for an
approximate overall thermal parameterB ) 3 Å2. Theδ threshold
was set to 8% of the maximum density, and 40% weak reflections
were perturbed byπ/2 phase shifts. Figure 1 shows the iteration
process of 100 structure solution trials. The success rate is 100%,
selecting any random phase set leads to a solution, and these are
only shifted or inverted relative to each other. Speed is also
remarkable; the average number of iterations is 500 that takes
12 s on a 2.4 GHz PC. To evaluate the quality of a typical result,
Figure 2 shows the isosurface plot of the electron density in the
unit cell. This already looks convincing, but we also input the
calculated structure factors into the program SHELXS97. Standard
peak picking of the Fourier map confirmed that the CF solution is
essentially complete. All 270 atoms of the six molecules are
identified and are within an average distance of 0.065 Å from their
final refined positions.6 Even the major occupancy site of the
disordered water shows up at a distance of 0.4 Å from its true
position. The comparison of coordinates is depicted in Figure 3.
We emphasize that this is a comparison of a raw,ab initio result
against the final least squares refinement of ref 6. Those of us who
spent decades as chemical crystallographers have never seen such
a clean initial structural model at this size range. The CF
performance should also be compared to the original CRUNCH
output, where 45 atoms were missing and a large number of
spurious atoms had to be deleted by using chemical evidences.

Success rate, speed, and completeness demonstrated above are
all important practical considerations. However, it is just as
appealing that the solution comes directly from a few lines of code
and not from the interplay of several procedures in a large, multi-
strategy program package.

In conclusion, we propose the use of the charge flipping method
to structural chemists. The algorithm is amazingly simple, easy to
program, and its working principle differs a great deal from
traditional direct methods. The treatment of translational pseudo-
symmetry is obviously a favorable case for CF. Similar resistant
structures with pseudosymmetries or ambiguous space groups are
the practical applications where the new method could well
complement standard software procedures.
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Figure 2. Isosurface plot of a typical CF solution. The isosurface level
was set equal to the threshold parameter. Thec axis is vertical.

Figure 3. Comparison of theab initio (red) and least-squares-refined (black)
coordinates. Thec axis is horizontal.
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